Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Virol ; 96(3): e29484, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38402600

RESUMO

Antiviral therapy based on neuraminidase (oseltamivir) or polymerase (baloxavir marboxil) inhibitors plays an important role in the management of influenza infections. However, the emergence of drug resistance and the uncontrolled inflammatory response are major limitations in the treatment of severe influenza disease. Protectins D1 (PD1) and DX (PDX), part of a family of pro-resolving mediators, have previously demonstrated anti-influenza activity as well as anti-inflammatory properties in various clinical contexts. Herein, we synthetized a series of simplified PDX analogs and assessed their in vitro antiviral activity against influenza A(H1N1) viruses, including oseltamivir- and baloxavir-resistant variants. In ST6GalI-MDCK cells, the PDX analog AN-137B reduced viral replication in a dose-dependent manner with IC50 values of 23.8 for A/Puerto Rico/8/1934 (H1N1) and between 32.6 and 36.7 µM for susceptible and resistant A(H1N1)pdm09 viruses. In MTS-based cell viability experiments, AN-137B showed a 50% cellular cytotoxicity (CC50 ) of 638.7 µM with a resulting selectivity index of 26.8. Of greater importance, the combination of AN-137B with oseltamivir or baloxavir resulted in synergistic and additive in vitro effects, respectively. Treatment of lipopolysaccharide (LPS)-stimulated macrophages with AN-137B resulted in a decrease of iNOS activity as shown by the reduction of nitrite production, suggesting an anti-inflammatory effect. In conclusion, our results indicate that the protectin analog AN-137B constitutes an interesting therapeutic modality against influenza A virus, warranting further evaluation in animal models.


Assuntos
Dibenzotiepinas , Ácidos Docosa-Hexaenoicos , Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Influenza Humana , Morfolinas , Piridonas , Triazinas , Animais , Humanos , Oseltamivir/farmacologia , Oseltamivir/uso terapêutico , Antivirais/farmacologia , Antivirais/uso terapêutico , Influenza Humana/tratamento farmacológico , Anti-Inflamatórios/uso terapêutico , Farmacorresistência Viral , Neuraminidase
2.
Front Microbiol ; 14: 1201640, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37779700

RESUMO

Flaviviruses have emerged as major arthropod-transmitted pathogens and represent an increasing public health problem worldwide. High-throughput screening can be facilitated using viruses that easily express detectable marker proteins. Therefore, developing molecular tools, such as reporter-carrying versions of flaviviruses, for studying viral replication and screening antiviral compounds represents a top priority. However, the engineering of flaviviruses carrying either fluorescent or luminescent reporters remains challenging due to the genetic instability caused by marker insertion; therefore, new approaches to overcome these limitations are needed. Here, we describe reverse genetic methods that include the design and validation of infectious clones of Zika, Kunjin, and Dengue viruses harboring different reporter genes for infection, rescue, imaging, and morphology using super-resolution microscopy. It was observed that different flavivirus constructs with identical designs displayed strikingly different genetic stabilities, and corresponding virions resembled wild-type virus particles in shape and size. A successful strategy was assessed to increase the stability of rescued reporter virus and permit antiviral drug screening based on quantitative automated fluorescence microscopy and replication studies.

3.
J Clin Virol ; 165: 105517, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37321149

RESUMO

OBJECTIVE: To develop a new method for reliable and rapid determination of the fitness of SARS-CoV-2 variants of concern. METHODS: Competition experiments between two SARS-CoV-2 variants were performed in cells of the upper (nasal human airway epithelium) and lower (Calu-3 cells) respiratory tracts followed by quantification of variant ratios by droplet digital reverse transcription (ddRT)-PCR. RESULTS: In competition experiments, the delta variant outcompeted the alpha variant in both cells of the upper and lower respiratory tracts. A 50/50% mixture of delta and omicron variants indicated a predominance of omicron in the upper respiratory tract whereas delta predominated in the lower respiratory tract. There was no evidence of recombination events between variants in competition as assessed by whole gene sequencing. CONCLUSION: Differential replication kinetics were shown between variants of concern which may explain, at least partly, the emergence and disease severity associated with new SARS-CoV-2 variants.


Assuntos
COVID-19 , Humanos , Transcrição Reversa , SARS-CoV-2/genética , Sequenciamento Completo do Genoma , Reação em Cadeia da Polimerase , Teste para COVID-19
4.
Viruses ; 14(2)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35215988

RESUMO

The types of interactions between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other respiratory viruses are not well-characterized due to the low number of co-infection cases described since the onset of the pandemic. We have evaluated the interactions between SARS-CoV-2 (D614G mutant) and influenza A(H1N1)pdm09 or respiratory syncytial virus (RSV) in the nasal human airway epithelium (HAE) infected simultaneously or sequentially (24 h apart) with virus combinations. The replication kinetics of each virus were determined by RT-qPCR at different post-infection times. Our results showed that during simultaneous infection, SARS-CoV-2 interferes with RSV-A2 but not with A(H1N1)pdm09 replication. The prior infection of nasal HAE with SARS-CoV-2 reduces the replication kinetics of both respiratory viruses. SARS-CoV-2 replication is decreased by a prior infection with A(H1N1)pdm09 but not with RSV-A2. The pretreatment of nasal HAE with BX795, a TANK-binding kinase 1 inhibitor, partially alleviates the reduced replication of SARS-CoV-2 or influenza A(H1N1)pdm09 during sequential infection with both virus combinations. Thus, a prior infection of nasal HAE with SARS-CoV-2 interferes with the replication kinetics of A(H1N1)pdm09 and RSV-A2, whereas only A(H1N1)pdm09 reduces the subsequent infection with SARS-CoV-2. The mechanism involved in the viral interference between SARS-CoV-2 and A(H1N1)pdm09 is mediated by the production of interferon.


Assuntos
Células Epiteliais/virologia , Vírus da Influenza A Subtipo H1N1/fisiologia , Nasofaringe/citologia , Vírus Sincicial Respiratório Humano/fisiologia , SARS-CoV-2/fisiologia , Interferência Viral , Replicação Viral , Coinfecção , Humanos , Interações Microbianas , Nasofaringe/virologia
5.
Sci Rep ; 11(1): 11885, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-34088957

RESUMO

SARS-CoV-2 is an enveloped virus responsible for the Coronavirus Disease 2019 (COVID-19) pandemic. Here, single viruses were analyzed by atomic force microscopy (AFM) operating directly in a level 3 biosafety (BSL3) facility, which appeared as a fast and powerful method to assess at the nanoscale level and in 3D infectious virus morphology in its native conformation, or upon inactivation treatments. AFM imaging reveals structurally intact infectious and inactivated SARS-CoV-2 upon low concentration of formaldehyde treatment. This protocol combining AFM and plaque assays allows the preparation of intact inactivated SARS-CoV-2 particles for safe use of samples out of level 3 laboratory to accelerate researches against the COVID-19 pandemic. Overall, we illustrate how adapted BSL3-AFM is a remarkable toolbox for rapid and direct virus analysis based on nanoscale morphology.


Assuntos
COVID-19/virologia , Microscopia de Força Atômica , SARS-CoV-2/ultraestrutura , Vírion/ultraestrutura , Animais , Chlorocebus aethiops , Humanos , SARS-CoV-2/fisiologia , Células Vero , Vírion/fisiologia , Inativação de Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...